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We apply the perturbation theory which was recently developed and justified 
by Joseph & Sattinger (1972) to determine the form of the time-periodic solu- 
tions which bifurcate from plane Poiseuille flow. The results a t  lowest significant 
order seem to be in good agreement with those following from the formal per- 
turbation method of Stuart (1960) as extended by Reynolds & Potter (1967). 
Given the numerical results of the present calculation, the rigorous theory 
guarantees that the only time-periodic solution which bifurcates from laminar 
Poiseuille flow is a two-dimensional wave. The wave which bifurcates a t  the 
lowest Reynolds number exists, but it is unstable when its amplitude is small. 
Solutions which escape the small domain of attraction of laminar Poiseuille flow 
snap through this unstable time-periodic solution with a small amplitude to 
solutions of larger amplitudes. 

1. Introduction 
We can study stability of steady solutions of the Navier-Stokes equations by 

considering how the eigenvalues y(R) = <(R) +iy(R) of the spectral problem of 
the linearized theory of stability vary with the Reynolds number R. Joseph & 
Sattinger (1972, hereafter called JS) have shown that, if the principal eigenvalue 
a t  criticality (y(R,) = io,) is simple and oo =k 0, then a finite amplitude, time- 
periodic solution bifurcates from the steady solution. The time-periodic solutionst 
exist only when the frequency W ( E )  and Reynolds number R(s) have certain 
values which depend on the amplitude 8. The solution and the values R(s) and 
o ( e )  can be obtained as perturbation series in powers of E which converge 
and solve the problem (JS). The implicit function theorem which is used to 
prove convergence of the series solution also guarantees that a unique analytic 
branch passes through the critical point (I?(€), E )  = (Rc, 0) of the bifurcation 
diagram. 

Unlike the problem of bifurcation of steady solutions from steady solutions 
in which two-sided bifurcations are possible, the time-periodic problem will 

t These solutions are unique to within an arbitrary phase. This degree of arbitrari- 
ness follows from the invariance of the bifurcation problem t o  changes in the origin of 
time. 
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allow either supercritical branching (R(E) - R, > 0) or subcritical branching 
(R(6) -Re < 0), but not both.? In the steady case, 

and, in general, R, =k 0 (see Joseph 1971). Therefore, R-R, changes sign as 6 

passes through zero. In  the time-periodic case R = B(e2) and o = w(e2),  and 
R(e2) - R, cannot change sign as 6 passes through zero. 

The bifurcating solutions have an important property of stability when E is 
small and y(R,) =; i w ,  is a simple eigenvalue of the spectral problems. 

(a)  Supercritical bifurcating solutions are stable to small disturbances. 
( b )  Subcritical bifurcating solutions are unstable to small disturbances. 

R(c)-R, = R , E + R , E ~ + . . .  (1.1) 

These results (see JS) have a central place in the theory of hydrodynamic 
stability. In  case (u) the exchange of stability bet-cveen the steady solution and 
the bifurcating solution is a continuous process involving the smooth develop- 
ment, of new modes of motion. I n  the second case ( b )  the bifurcating solution is 
unstable; disturbances which escape the domain of attraction of the steady 
solution snap through the unstable bifurcating solution and are attracted to 
(possibly ‘turbulent ’) solutions with larger norms. 

The present work is essentially an application of the perturbation method 
developed and justified in JS to the bifurcating problem for plane Poiseuille 
flow. This bifurcating problem has been treated, using a formal mrthod of 
amplitude expansion, by Stuart (1960), Watson (1960), Reynolds & Potter 
(1967), Pekeris & Shkoller (1967, 1969) and McIntire & Lin (1972). The results 
of our analysis at lowest order are not all directly comparable with the results 
of these other authors because they calculated ‘Landau constants’ and we 
calculate derivatives of the analytic functions B(e2) and w(s2) .  However, at 
lowest significant order our results and those of the other authors mentioned do 
appear to be in good agreement where they can be compared. 

To a considerable degree the outcome of the bifurcation analysis of plane 
Poiseuille flow is disappointing. Since the bifixrcating solutions are subcritical 
when E is small, they are unstable. Presumably disturbances are attracted to 
large norm solutions which are possibly beyond the reach of perturbation theory. 
It follows that the unstable time-periodic solution which we shall construct as 
a power series in E will not represent the larger norm solutions which replace 
laminar Poiseuille flow in experiments. 

To a certain extent, the present calculation gains more significance by virtue 
of its connexion with the general rigorous theory of JS. In  particular, this con- 
nexion allows definite assertions about the uniqueness of the two-dimensional 
solution which bifurcates a t  criticality as well as a proof of the properties of the 
solutions which bifurcate from any point on the neutral curve for plane Poiseuille 
flow. We are also interested in demonstrating that the bifurcation theory of 
JS can be used for numerical calculations as well as for proofs about the 
qualitative properties of bifurcating solutions. 

t We are assuming here that the steady solution loses stability when R is increased 
past R,. When the steady solution gains stability as R is increased past R,, subcritical 
solutions are those for which R(B) - R, > 0. This is the situation on the upper branch of 
the neutral curve of figure 1. 
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2. The basic flow and the disturbance flow 
In JS the bifixcation theory was developed for arbitrary steady solutions of 

the Navier-Stokes equations in a bounded domain. t Instead of specializing the 
results of JS for our plane Poiseuille flow problem, we are going to rederive 
the perturbation theory for two-dimensional disturbances using the stream 
function. The restriction to two-dimensional disturbances allows a more direct 
comparison with the method used by previous authors. Moreover, we shall 
argue in $ 9  that the restriction to two-dimensional disturbances does not 
necessarily imply a loss in the generality of the results. 

The Navier-Stokes equations for a viscous flow in a duct without body forces 
can be written in dimensionless form as 

(2.la) 
Y 

with v.v  = 0, (2.lb) 
w v = 0 on the surface of domain s2. (2.1c) 

N -.. , h 

In the equations, v = (v”, @, @) is thevelocity, Fis the pressure, Ris the Reynolds 
number and t is the time. Here we use the maximum velocity of the steady flow 
omax and the half-height of the channel I; as the characteristic velocity and length 
so that R = OmaxL/v, with v denoting the kinematic viscosity. 

For two-dimensional - .  flow, the velocity field can be expressed in terms of 
a stream function T(x, y, t )  as 

z a$ - a+ z a$ v = i-- u = -  v=-- 
ay J ~ ,  aY ’ ax - 

Substituting (2.2) into (2.1) and eliminating pressure terms yields 

(2 .3a)  

v w Y Y 

Y = a Y / a y = o  at  y = f i .  (2.371) 

For the case of plane Poiseuille flow considered in the present analysis, the 
system (2.1) has a steady solution 

77 = 1-y2, p = w = 0. (2.4) 

It is known that the steady solution is globally stable when R is small. For large 
values of R, solution (2.4) may be stable to small disturbances and unstable to 
larger disturbances. At  a yet larger value of R = R,, solution (2.4) loses stability 
and is replaced by another type of stable solution, such as a secondary steady 
motion, or 5 time-periodic motion. 

v 

Let II“ = ?(y) + &(x, y, t ,  R), (2.5) 

where e”(y) = y - +y3 is the stream function for (2.4) and c is an amplitude which 
will be more carefully defined later. 

by Joseph (1973). 
t The bifurcation of periodic solutions into quasi-periodic solutions has been treated 

22-2 
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Substitution of ( 2 . 5 )  into (2 .3 )  leads to 

( 2 . 6 a )  
a a a$ 1 

-A@ + 8- A@ - -P-- - a29 +€J(@, A$) = 0, at ax ax R 
h h 

Y = ay/ay = o at  y = 5 1, (2 .6b )  

( 2 . 6 ~ )  where 9 is a periodic function of x with period 2 n / a  

and 
A A a 9  a A a+ a A@. 

J ( Y , A Y )  = - - AT---  
ay ax ax ay 

3. Instability of the basic flow 

setting E = 0 in ( 2 . 6 a ) .  We may then write (2 .6 )  as 
The spectral problem for the instability of (2 .4)  is obtained from (2 .6)  by 

A aQ 
aY 

(:A +9) = 0, Y = - = 0 at y = -1: 1, periodicity in x, ( 3 .  l a ,  b,  c )  

a - a  
where 9 = 9 [ O , h ]  = D - A - U ~ ~ - - A A ~  ( 3 4  ax ax 

and h = 1/R. 
To obtain the spectral problem, we seek soluticms of (3 .1)  of the form 

9 ( x ,  y, t ,  A )  = e -y (A) t$ (x ,  y, A). 
This leads to 

(3 .3)  

- y A $ + 9 $  = 0, qk = a$/ay = 0 at  y = 5 1,  periodicityinz. ( 3 . 4 a , b , c )  

The values y(A) = [ ( A )  +ir(A) are eigenvalues of the spectral problem 
(3 .4a ,  b, c). If [ ( A )  < 0 then plane Poiseuille flow 0 is unstable. 

For large values of h (small R), t ( A )  > 0 for all eigenvalues y(h). The stability 
and instability border is defined by the critical values h = A, = l/Rc, where 
[(A,) = 0. At criticality y(A,) = ir(h,) = iw, andP[O, A,] = 9,. 

Assume that ?(A) is a simple eigenvalue of (3 .4) .  Then y (A)  is also an eigenvalue, 
where 7 = 6 - ir is the complex conjugate of y. The functions 

@(x, Y, 4 and iax,  Y, A )  (3 .5 )  

are eigenfunctions of (3 .4 )  belonging, respectively, to the eigenvalues y and 7 

A consequence of the requirement that the solutions (3 .5)  of (3 .4)  are periodic 
functions of x with period 2n/a is that these functions may be expanded in 
Fourier series 

of (3 .4 ) .  

q+ = C eiam $(n, y, A). (3 .6)  
A 

Since (3 .4 )  is a linear problem, each term of (3 .6 )  must separately satisfy (3 .4 )  
and, without loss of generality, we may consider that all solutions are of the form 

( 3 - 7 )  +(x, y, 44) = eiaa: $(Y7 a, W).  
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FIGURE 1. The neutral stability curve for plane Poiseuille flow. 

Substitution of (3.7) into (3.4) leads to the Orr-Sommerfeld problem for plane 
Poiseuille flow. 

The neutral curve is the locus of values h(a) for which <(A(&)) = 0. Th' is curve 
is shown in figure 1. 

4. The adjoint problem 
Define the scalar product - 

2nla 1 

(a, b )  = l aa6dQ = lo A d y d x .  
-1 

(4.1) 

The operator 9* which is adjoint to 9 relative to (4.1) is defined by the re- 
quirement that 

for all fields a and b which are-'2?r/a periodic in x and have 

( a , 9 b )  = (9*~, b), (4.2) 

a = b = aa/ay = ab/ay = o at y = 5 1. 

We find that 
(4.3) 

The adjoint eigenvalue problem is thus given by the system 

- j iA$,*+y*$* = 0, @* = a@*lay = 0 a t  y = f 1, periodicity in x. 

(4.4a, b, c) 



342 T. S. Chen and D.  D.  Joseph 

5. Perturbation formula for y' 
A glance at the neutral curve of figure 1 shows that, on the arc AC, plane 

Poiseuille flow loses stability as R is increased past R, at a fixed value of a. 
On the arc CD, plane Poiseuille flow gains stability as R is increased past R, at 
a fixed value of a. We are going to derive a perturbation formula which gives the 
value of dy(h)/dh = y' a t  a fixed a. 

From (3.4) we find that 

( - y A  +9) d$./dA -?'A$ - A2$ = 0, ( 5 . 1 ~ )  

= 0 at y = -1- 1, periodicity in z. (5.1 b, c) 

Since 

6. The perturbation series for periodic solutions which bifurcate from 
plane Poiseuille flow 

We return now to the basic problem (2.6). We shall restrict this problem to a 
search for nonlinear solutions which are periodic in time with period 27r/w(s). 
By introducing the Poincard-Lindstedt frequency mapping 

we may reformulate (2.6) as 

and 

w(e) t  = 8, 

h A 

$Q+eJ(?',A!$') = 0, Y = aY/ay = 0 at y = ~f: 1, ( 6 . 1 ~ )  b )  

@(z, y, s) is periodic with period 27r/a in x and 27r in s, ( 6 . 1 ~ )  

where $[o, A] = w aA/as +L?[O, A]. (6.2) 

To complete the specification of the problem, we shall need a normalizing con- 
dition which will define e. This condition has the form 

[A@] = - k2, (6.1d) 

where k2 is any fixed positive number to be chosen for convenience. This implies 
that v 

The definition of the bracket notation is given in $ 7 .  

- A'(T - @'")I = sL~. (6.3) 

The solution of (6.1) can be constructed as a Taylor series 

(6.4) 



Xubcritica'l bifwcution of plane Poiseuille $ow 343 

where A, = (l / l!)  8A/as i ,  etc. Substitution of (6.4) into (6.1) leads us to  the follow- 
ing sequence of problems. 
At zeroth order 

$oYo = 0, Yo = aYo/ay = 0 a t  y = 1, [AY,] = -k2.-f 

At first order 

$oYl+~lYo+Jo = 0, Y, = aYl/8y = 0 at y = f 1, [AY,] = 0. 

At second order 
$OYZ +A y, + , $ 2 ~ 0  + 4 = 0, 

Y2 = aY2/ay = 0 a t  y = & 1, [AYJ = 0. 

Here, $0 = BbO, hol, 
a 

' -  "s  

J, = qr0, aye) 

$ - w -A-hlA2 (I > O), 

and J1 = J(Yl, ATo) + J(Yo, AYl). 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

The only two solutions of (6.5) which are possible when y(h,) is a simple 

(6.12) 
eigenvalue of go are 

Without loss of generality, we may take the unique real-valued solution of (6.5) 
in the form 

Yo = 2Re (zl). (6.13) 

x1 = e- is+(x,  y; h(a)) ,  x 2  = X1. 

The amplitude of this solution is fixed by the normalizing condition (see $7) .  

7. The solvability conditions 
We shall need to define another scalar product 

277 

[a, b] = -!- (a, b)  ds 
2n 0 

for 2n periodic functions of s. The bracket 

where 

are the solutions of (4.4) a t  criticality when 7 = -iw,. It now follows that (6.3) 
defines 8 as the projection of the difference between the periodic solution and 
Poiseuille flow onto the eigensubspace of the operator so. 

We may define the adjoint operator 

y; = - w aqas +Y* (7.4) 

$$Y$ = 0, Y$ = aY$py = 0 a t  y = I. (7.5) 

relative to the scalar product (7.1). The problem adjoint to (6.5) is described by 
the system 

t We can always choose an arbitrary scale for q50. To compare our results with those 
previously given, w0 chose @o=q5: = 1 at y=O This fkes a vdue for k2. The results pre- 
sented in table 1 a10 based on this normalizing condition. 
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Suppose that 5 iw ,  are simple eigenvalues of 3, and consider 

Yo4 =ft (7.6) 

where f is a periodic function of x and s with periods 24a and  IT, respectively; 
Q = @lay = 0 at y = & 1 and q5 is  to have the same periodicity as f i n  x and s. Thus 
(7.6) has solutions i f  and only i f  

[f,4 = rf,Z;l = 0. 

[f, $1 = [Yo$, $1 = [4,#,* $1 = 0. 

(7.7) 

Proof. Let i = 1 , 2  and note that 

(7.8) 

This proves that (7.7) is a necessaryIcondition for solvability. The proof that it 
is also sufficient is given in JS. 

Iff is real valued, then 
rf,1;= [f,.TI = [ f A I .  (7.9) 

Hence, for real-valued f ,  the single condition 

[fl= 0 (7.10) 

The periodic solutions of (7.6) are not unique. Any solution of the homogeneous 
implies both conditions (7.7). 

problem (6.5) may be added to a solution of (7.6). The condition 

[A41 = 0 (7.11) 

is sufficient to ensure uniqueness; it guarantees that 4 is orthogonal to solutions 
of the homogeneous problem. Our choice of the definition of E is motivated by 
our desire to generate this convenient orthogonality condition. 

On applying the condition (7.10) to (6.6) and (6.7), we find that 

and 

r $ l y O l +  [JOI = 0 (7.12) 

(7.13) [$l TI1 + [$zYol+ [Jll = 0. 

We note that Jo has no terms proportional to e i i s  and [J,] = 0 by virtue of the 
integration over the variable s. Hence, a t  first order, 

O = [$I Yo] = 01 - AYo - hl[A2YO] 

(7.14) 

K S  I 
= ( iw,  - ?'A,) (Vll'.,, Vll'O*), 

where the last equality 
at criticality with 

It follows that 

follows from an integration by parts using (5.4) evaluated 

Y ,  ho(4) = $0- (7.15) 

(7.16) w1 = A, =yl = 0, 
when y' =k 0. 

Turning now to (7.13), we find with use of (7.16) that 
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To compute A, and w2 we must solve problems (6.5) and (6.6). It is shown in JS 
that 

&l+l = W 2 l f l  = 0, (7.18) 

where I is any integer or zero. This result holds generally and not just for plane 
Poiseuille flow. Therefore, the first non-zero correction 

and 

(7.19) 

(7.20) 

can be determined from (7.17) once [Jl] is known. To compute J1, we must solve 
the problem (6.6). 

8. The solution of the first-order equation 
Withfl = 0 we may write (6.6) as 

$oYl+Jo = 0,  Yl = aY1/ay = 0 at  y = k 1, [AYl] = 0. ( S . l a , b ) c )  

Setting 

we find that 
@o(", Y) = ei" $o(Y), 94% Y) = eim$:(Y), (8.2) 

Jo = J(Yo,AYo) = Ae2i@+Be-2ie+B+B, (8.3) 

where 

ih, A 
(Rl -4a2911) -" f f$11+2~  (&l-8a2$"+16a4$ll)+~ = 0 (8.10) 22a 

and A@& = B. (8.11) 

We note that, on the neutral curve of figure I, the critical eigenfunction 
$o(y) = $,( - y) is a symmetric function. In the calculations we replace the given 
boundary conditions with symmetric boundary conditions 

&(O) = &'(O) = $o(l) = $;(I) = &*(O) = $$"/(O) = $:(I) = $:'(I) = 0. (8 .12)  

Inspection of A in B and (8.10) and (8.11) shows that they are odd functions of y. 
We may, therefore, seek odd solutions of (8.10) and (8.1 I) in the half-interval 

$,(O) = qqj(0) = = &(1) = 0 (j = 1,2) .  (8.13) 
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Equatioits (8.10), (5.11) and (8.13) wcresolvednumerically over the half-height 
of the channel by Runge-Kutta integration, using a filtering technique to remove 
the 'parasitic error '. This technique was first devised by Kaplan (1964) for the 
solution of the Orr-Sommerfeld equation and has subsequently been applied to 
the solution of non-homogeneous equations by many other authors (sec, for 
example, Reynolds & Potter 1967). 

To begin with, the eigenvalue problem of the zeroth-order equations (6.5) 
(i.e. the Orr-Sommerfeld system) was first solved, using the symmetrical con- 
ditions (8.12), to obtain the eigenvalue c, = @,,/a for a given point (a,  R,) = (a, l /Ao)  
on the neutral curve. The corresponding amplitude function 9o and its deriva- 
tives were also computed. This was done for a range of the parameters (a ,  BJ.  
The results agree with those of Fu & Joseph (1970) and are illustrated in figure 1. 
As a check, the eigenvalue c, was also computed from the adjoint problem (7.5) 
using the conditions (5.12). It yielded eigenvalues which agreed very well with 
those obtained from the Orr-Sommerfeld system. The adjoint eigenfunction 9; 
and its derivatives for the same parametric values (a,  R,) were computed as well. 

Once the $0 problem had been solved, the solutions to the non-homogeneous 
equations for q511 and q512, equations (8.10), (8.11) and (8.13), were obtained for 
given values of the parameters c,, a and R, used in the solution of the q50 problem. 
These solutions of the non-homogeneous equations were obtained as the sum 
of a solution to the corresponding homogeneous equation and a particular solu- 
tion. The amplitude functions q511 and $12 and their derivatives result directly 
from the numerical integration. All the calculations were performed on a 
CDC 6600 digital computer with single-precision arithmetic. 

9. The expressions for A, and w2 

From (6.11) and (2.7), J1 can be written as 
To calculate A, and w2 from (7.17), one begins with the evaluation of [JJ.  

ayP a ay a aYp, a ay a 
- ay ax ax ay ag ax ax ay (9.1) J - > - A T  -~-Aa\k"o+--A'€!l--O-AYl. 

By employing (8.2), one finds that 
27l 1 

-1 
where 

H ria[ - &($; - a2$0) - 2$11($: - a'&) + 2?;(9;1- 4a29,,) 

+ $0(&1- 4a29;11 + ( $ 4 2  + &2) (& - ."0, - $0(95[2 + &,)I. (9-3) 

Equation (9.2) can be further simplified by integration by parts, This yields 
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a 

0-650 
0-700 
0.750 
0.800 
0.850 
0.900 
0.925 
0.950 
1.000 

1-050 
1.075 
1.090 
1.095 
1.0964 
1.0904 
1.095 
1.090 
1.075 
1.050 
1.020 
1.000 
0.980 

1.02lt 

R, 
22 424 
16355 
12461 
9 882 
8 141 
6 965 
6 540 
6208 
5815 
5 7721- 
5890 
6314 
7 024 
7613 
7 947 
9 356 
9895 

11217 
14307 
19360 
26 360 
31 890 
38 329 

CT E‘ 
0,1656 192.36 
0.1823 158.44 
0,1983 133.01 
0.2136 113-33 
0.2278 97.57 
0,2408 84-43 
0.2467 78-48 
0.2522 72.78 
0.2612 61-35 
0.2640 56.10 
0.2664 47-41 
0.2658 36.30 
0.2624 23.65 
0.2591 14.56 
0.2572 9.67 
0-2497 - 10-03 
0.2470 - 17.36 
0-2410 - 35.06 
0.2292 - 75.62 
0.2147 - 140.71 
0.2005 - 228.83 
0.1921 - 296.93 
0.1842 - 374.35 

t Minimum critical point 

A, 
- 0.043 
- 0.055 
- 0.066 
- 0-070 
- 0.057 
- 0.010 

0.035 
0.103 
0.359 
0.556 
1.039 
2,073 
4.437 
8.589 

14.002 
- 17.293 
- 10.735 
- 6.127 
- 3.562 
- 2’394 
- 1.771 
- 1.507 
- 1.303 

Wa 

34.97 
39.34 
46.48 
57.72 
75.60 

104.75 
126.23 
154.94 
251.69 
323.42 
501-49 
901.37 

1875.20 
3648.26 
5989.47 

- 7704.32 
- 4863.71 
- 2888.68 
- 1818.73 
- 1339’35 
- 1067.27 
- 937.12 
- 824.43 

TABLE 1. Neutral stability characteristics for plane Poiseuille flow (ci = 0) 

With (9.4), the terms A, and w2 can be evaluated from (7.17). By separating 
(7.17) into real and imaginary parts, one finds 

where y’ = (A$,, A$;)/(V$,, V$;) at criticality and, when use is made of (4.i) 
and (8 .2) ,  

and 

With the q50, c$$, 411 and $12 solutions available, the expressions for (V$o, V$$), 
(A$,, A$:) and [Jl] were evaluated numerically. The values of A, and w2 were 
then calculated from (9.5) and (9.6). 

The numerical results are listed in table 1. These results were obtained from 
calculations employing 100 steps over the interval 0 < y < 1, for a step size of 
0.01 was found to give sufficiently accurate results. 

Inspection of table i shows that 6’ = dg/dA changes sign at  the point C of the 
neutral curve of figure 1.  The values of [JJ are everywhere finite. Hence, from 
(9.5) and (9.6) we see that A, and w, are both unbounded at point C of the neutral 
curve. 
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FIGURE 2. Schematic sketch of the surface of periodic solutions which bifurcate from plane 
Poiseuille flow. The dotted lines indicate subcritical bifurcation. 

To understand the results of the numerical computation, we consider the 

surface R = R ( s 2 , ~ )  
on which periodic solutions of (6.1) exist, This surface is exhibited in figures 2 
and 3. These figures indicate the existence of periodic solutions with 

R(8,  a) = R(0, a,) 

and a > a,. This means that the nonlinear problem has periodic solutions with 
wavelengths shorter than those for the linearized problem. 

The numerical results exhibited in table 1 are in qualitative agreement with 
similar results which have been given by Reynolds & Potter (1967), Pekeris & 
Shkoller (1967, 1969) and Mchtire & Lin (1972). 

10. Uniqueness and stability of the solutions 
It is a consequence of the bifurcation theory of JS that, if R is a critical value 

belonging to a simple eigenvalue y(R) = iw(R) of the spectral problem, then, 
apart from phase differences, one and only one periodic solution bifurcates there. 
Now Squire’s theorem ensures that the values R(a) lying on the lower branch 
AC of the neutral curve of figure 1 are the smallest of the critical values for the 
full three-dimensional spectral problem. Assuming simplicity, it follows that 
two-dimensional solutions will bifurcate &st from the critical value R(a) on the 
lower branch of the neutral curve. These ‘Tollmien-Schlichting ’ waves are not 
observed, however, because they are unstable. 
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FIGURE 3. Schematic sketch of the projection of the surface of periodic solutions onto the 
R ,  plane. Note that nonlinear solutions with a > a,,, are implied by our construction. 
Therefore, shorter periodic waves are possible in the nonlinear problem than in the 
linearized problem (e2 = 0). 
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FIGURE 4. Schematic bifurcation diagram for Poiseuille flow. Disturbances which escape 
the domain of attraction of laminar Poiseuille flow snap through the periodic solution and 
are attracted by ‘turbulent solutions’ with larger norms. 

We shall omit the proof of stability of supercritical bifurcating solutions 
(see JS). The main hypothesis of this proof, like that of the bifurcation theory 
generally, is the simplicity of the eigenvalue y at criticality. For the two- 
dimensional problem, this assumption appears to be valid. 

The ‘stability of supercritical disturbances is of a very restricted kind. We 
guarantee stability only to small disturbances having the same wavelength as 
the bifurcating solution. This last restriction could never be expected to hold 
in nature and we must reserve judgement about the actual stability of solutions 
on the lower branch of the neutral curve (below point 0 on figure 2). 
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The instability of the subcritical bifurcating solutions is a much more sub- 
stantial result which is likely not to depend, in any crucial way, on the assumed 
simplicity of y.  If a solution is unstable to one type of disturbance, it will not be 
made more stable by allowing more disturbances. 

Since most interesting periodic solutions (those in the neighbourhood of point 
B of the neutral curve) are subcritical, snap-through instabilities of laminar plane 
Poiseuille flow are to be expected. The discontinuous transitions which are 
implied by the snap-through instability are in excellent agreement with ex- 
perimental observations. The conjectured stability picture for plane Poiseuille 
flow is exhibited in figure 4. 

This work was partially supported by grants from the University of Missouri- 
Rolla (T. S. C.) and the National Science Foundation GK-12500 (D. D. J.). 

Appendix. A brief comparison with previous work 
The present method differs from the method of amplitude expansions used 

by Stuart (1960), Reynolds & Potter (1967) and others in several ways. The 
present method is rigorous; it leads to exact statements about the number of 
bifurcating solutions, their analytic characterization, their stability properties 
with respect to Ploquet analysis; it is free from arbitrary assumptions; in its 
general form (given by JS) it applies to steady flow in arbitrary bounded 
domains;? it leads directly to the nonlinear ‘neutral curve’, that is, to the locus 
R(t.2) of periodic solutions; it has a relatively simple structure which makes the 
mathematical derivations easy to follow and keeps the notation at a minimum; 
and it is convenient for numerical computations. 

It is difficult to make a direct comparison between the present method and the 
method of amplitude expansions because the two theories start from different 
resolutions of the same motion: the method of Stuart and the others starts from 
horizontally averaged equations and considers fluctuations around this average 
motion; our method decomposes the motion into a known laminar flow (here, 
Poiseuille flow (2.4)) plus a disturbance. In  parallel flow, where the horizontal 
averaging can be defined and the method of amplitude expansions should apply, 
we can make some comparisons at  the lowest significant order. The functions 
CD, $1, $2 arid f of Stuart (1960) correspond to our functions $;, #o, #11 and 
q512 + gI2. Moreover, 

ri 

f Readers interested in applying the general theory of JS should make the following 
corrections: replace E with y in (3.7)-(4.9); o, with om-h,Imy’ in (4.10), (4.14b) and 
(5.12); cr with uo0 in (5.4)-(5.6); the last equation on p. 91 with 

- U,Oo(l -ia,) - i W ,  + f h Z  + 3[Fz]1 = 0; 

t ‘ =  Owithe$; Oafter(5.6);uwithQin(3.16)and(3.20); -7withYin (3.2);a0with -a, 
in (5.9), s with 6 in (3.15), and A, with - A ,  in (4.14~). 
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Present work McIntire & Lin 
y‘h, - io, + &‘2’ (ci, a,  R) 

(0 ,  1.021, 5772) 31.1 - i173.4 29.67-i165.9 
(0 ,  1.094, 7500) 119.5-i308 101.2-i258 

TABLE 2. A representative comparison of results 

where the second ratio of integrals is equation (4.20) of Stuart (1960) and 7c is 
a Landau constant. 

Given w2, A, and y‘ we may compute the complex Landau constant 

iak( = - iw ,  + y’h,) 

of Stuart. On the other hand, computation of the Landau constant k does not 
fix the value of A, since y’ must also be computed. 

The comparison of OUT numerical results with those of Reynolds & Potter 
(1967) is facilitated by their ‘conversion of notation’ (table 1). According to that 
table their a@)+ ib@) = ialc = - iw, + y’h,. McIntire & Lin (1972) use the notation 
and equations of Reynolds & Potter and in table 2 we have made a represeiitative 
comparison. 
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